MongoDB Atlas
MongoDB Atlas is a fully-managed cloud database available in AWS, Azure, and GCP. It now has support for native Vector Search on the MongoDB document data.
Installation and Setup
See detail configuration instructions.
We need to install langchain-mongodb
python package.
pip install langchain-mongodb
Vector Store
See a usage example.
from langchain_mongodb import MongoDBAtlasVectorSearch
Retrievers
Full Text Search Retriever
Hybrid Search Retriever
performs full-text searches using Lucene’s standard (BM25
) analyzer.
from langchain_mongodb.retrievers.full_text_search import MongoDBAtlasFullTextSearchRetriever
Hybrid Search Retriever
Hybrid Search Retriever
combines vector and full-text searches weighting them the viaReciprocal Rank Fusion
(RRF
) algorithm.
from langchain_mongodb.retrievers.hybrid_search import MongoDBAtlasHybridSearchRetriever
Model Caches
MongoDBCache
An abstraction to store a simple cache in MongoDB. This does not use Semantic Caching, nor does it require an index to be made on the collection before generation.
To import this cache:
from langchain_mongodb.cache import MongoDBCache
To use this cache with your LLMs:
from langchain_core.globals import set_llm_cache
# use any embedding provider...
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
mongodb_atlas_uri = "<YOUR_CONNECTION_STRING>"
COLLECTION_NAME="<YOUR_CACHE_COLLECTION_NAME>"
DATABASE_NAME="<YOUR_DATABASE_NAME>"
set_llm_cache(MongoDBCache(
connection_string=mongodb_atlas_uri,
collection_name=COLLECTION_NAME,
database_name=DATABASE_NAME,
))
MongoDBAtlasSemanticCache
Semantic caching allows users to retrieve cached prompts based on semantic similarity between the user input and previously cached results. Under the hood it blends MongoDBAtlas as both a cache and a vectorstore.
The MongoDBAtlasSemanticCache inherits from MongoDBAtlasVectorSearch
and needs an Atlas Vector Search Index defined to work. Please look at the usage example on how to set up the index.
To import this cache:
from langchain_mongodb.cache import MongoDBAtlasSemanticCache
To use this cache with your LLMs:
from langchain_core.globals import set_llm_cache
# use any embedding provider...
from tests.integration_tests.vectorstores.fake_embeddings import FakeEmbeddings
mongodb_atlas_uri = "<YOUR_CONNECTION_STRING>"
COLLECTION_NAME="<YOUR_CACHE_COLLECTION_NAME>"
DATABASE_NAME="<YOUR_DATABASE_NAME>"
set_llm_cache(MongoDBAtlasSemanticCache(
embedding=FakeEmbeddings(),
connection_string=mongodb_atlas_uri,
collection_name=COLLECTION_NAME,
database_name=DATABASE_NAME,
))
``